Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence.
نویسندگان
چکیده
Fano resonances in plasmonic systems have been proved to facilitate various sensing applications in the nanoscale. In this work, we propose an experimental scheme to realize a single protein sensing by utilizing its two-photon luminescence enhanced by a plasmonic Fano resonance system. The asymmetric gold hexamer supporting polarization-dependent Fano resonances and plasmonic modes without in-plane rotational symmetry is used as a referenced spatial coordinate for bio-sensing. We demonstrate via the full-vectorial three-dimensional simulation that the moving direction and the spatial location of a protein can be detected via its two-photon luminescence, which benefits from the resonant near-field interaction with the electromagnetic hot-spots. The sensitivity to changes in position of our method is substantially better compared with the conventional linear sensing approach. Our strategy would facilitate the sensing, tracking and imaging of a single biomolecule in deep sub-wavelength scale and with a small optical extinction cross-section.
منابع مشابه
Enhanced Plasmonic Resonance Energy Transfer in Mesoporous Silica-Encased Gold Nanorod for Two-Photon-Activated Photodynamic Therapy
The unique optical properties of gold nanorods (GNRs) have recently drawn considerable interest from those working in in vivo biomolecular sensing and bioimaging. Especially appealing in these applications is the plasmon-enhanced photoluminescence of GNRs induced by two-photon excitation at infrared wavelengths, owing to the significant penetration depth of infrared light in tissue. Unfortunate...
متن کاملOptimization of the Fano Resonance Lineshape Based on Graphene Plasmonic Hexamer in Mid-Infrared Frequencies
In this article, the lineshape of Fano-like resonance of graphene plasmonic oligomers is investigated as a function of the parameters of the nanostructures, such as disk size, chemical potential and electron momentum relaxation time in mid-infrared frequencies. Also, the mechanism of the optimization is discussed. Furthermore, the environmental index sensing effect of the proposed structure is ...
متن کاملLarge-area Low-cost Fabrication of Complex Plasmonic Nanostructures for Sensing Applications
In this thesis, we introduce hole-mask colloidal lithography and nanosphere lithography techniques for low-cost nanofabrication of large-area (about 1 cm) plasmonic nanostructures with different complex shapes. For the first one, we use thin film PMMA-gold hole-masks, which are first prepared with polystyrene colloids, combined with following tilted-angle-rotation evaporation to fabricate large...
متن کاملMultifunctional superparamagnetic nanoshells: combining two-photon luminescence imaging, surface-enhanced Raman scattering and magnetic separation.
With the increasing need for multi-purpose analysis in the biomedical field, traditional single diagnosis methods cannot meet the requirements. Therefore new multifunctional technologies and materials for the integration of sample collection, sensing and imaging are in great demand. Core-shell nanoparticles offer a unique platform to combine multifunctions in a single particle. In this work, we...
متن کاملElectrical modulation of fano resonance in plasmonic nanostructures using graphene.
Pauli blocking of interband transistions gives rise to tunable optical properties in single layer graphene (SLG). This effect is exploited in a graphene-nanoantenna hybrid device where Fano resonant plasmonic nanostructures are fabricated on top of a graphene sheet. The use of Fano resonant elements enhances the interaction of incident radiation with the graphene sheet and enables efficient ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 7 48 شماره
صفحات -
تاریخ انتشار 2015